Issue 10, 2020

H-Bonding on spin centres enhances spin–spin coupling for organic diradicals

Abstract

Organic magnetic materials must possess sufficient magnetic coupling to realise their potential. Most coupling studies were based on intramolecular modifications because the molecular structure ultimately dictates the molecule's properties. In this study, non-covalent interactions, specifically hydrogen bonding (HB), are explored as a strategy to enhance the magnetic coupling in a diradical. Model systems were conceptualised based on nitroxide (NO) and nitronyl nitroxides (NN) as spin centres (SCs) with an acetylene-bridged phenylene coupler. The combinations and orientations of SCs were chosen so that a ferromagnetic diradical would result, meaning two NOs are meta directionally oriented (mNO-NO) while NO and NN are in para positions (pNN-NO). Hydrogen-bonding was introduced to mNO-NO and pNN-NO using HX as HB donors (HX = HF, HCl, HBr, H2O, and NH3). HB interaction energies were calculated with relative strengths in the following order: HF > HCl > H2O ≈ HBr > NH3. Reduced density gradients (RDG) confirm the presence of HB and the relative strengths of HX varies incrementally. This justifies using them to investigate how the HB interaction energy influences diradical magnetic coupling. Magnetic coupling revealed through J values was found to have a linear dependence on the HB strength. An improved J value is associated with a decrease in total spin density values on major atom sites N and O. This work demonstrates the potential use of HB for further increasing the magnetic exchange in organic magnetic materials. Insights derived from this work can be used in the design of diradical aggregates.

Graphical abstract: H-Bonding on spin centres enhances spin–spin coupling for organic diradicals

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2019
Accepted
20 Jan 2020
First published
20 Jan 2020

J. Mater. Chem. C, 2020,8, 3402-3408

H-Bonding on spin centres enhances spin–spin coupling for organic diradicals

F. K. B. Burnea, Y. Nam and J. Y. Lee, J. Mater. Chem. C, 2020, 8, 3402 DOI: 10.1039/C9TC05820F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements