Jump to main content
Jump to site search


Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3−xCaxAl5−xSixO12:Cr3+ (x = 0–2.0) garnet phosphors

Author affiliations

Abstract

The rapid development of portable spectrometers has evoked a large demand for minimized light sources; meanwhile, NIR phosphor-converted light-emitting diodes (NIR pc-LEDs) are an optimal choice due to their compactness and low cost. The phosphors used in NIR spectroscopy (NIRS) are required to have broadband emission and high quantum efficiency (QE) for a wider detection range and efficient photo-to-electricity conversion. Inspired by the structural tunability of Y3Al5O12 (YAG), we proposed to achieve broadband emission by crystal field engineering, i.e., indirectly regulating the crystal field strength of Cr3+ via the co-substitution of Y3+–Al3+ by Ca2+–Si4+ in YAG. The crystal field strength experienced on Cr3+ decreased as the octahedron was distorted and enlarged by the co-substitution. A broadband NIR emission with a large full width at half maximum (FWHM) of 160 nm and a high internal quantum efficiency (IQE) of ∼75.9% was realized in Y3−xCaxAl5−xSixO12:0.6% Cr (x = 1). The suitability of the investigated NIR phosphor was demonstrated by fabricating an NIR pc-LED prototype, and the detection resolution was improved by 30% compared to that of a traditional white pc-LED. These results indicate the great potential of the Y2CaAl4SiO12:Cr phosphors for use in highly precise and sensitive NIR pc-LEDs.

Graphical abstract: Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3−xCaxAl5−xSixO12:Cr3+ (x = 0–2.0) garnet phosphors

Back to tab navigation

Supplementary files

Article information


Submitted
22 Oct 2019
Accepted
12 Dec 2019
First published
12 Dec 2019

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3−xCaxAl5−xSixO12:Cr3+ (x = 0–2.0) garnet phosphors

M. Mao, T. Zhou, H. Zeng, L. Wang, F. Huang, X. Tang and R. Xie, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/C9TC05775G

Social activity

Search articles by author

Spotlight

Advertisements