Jump to main content
Jump to site search


Efficient reversible photoisomerisation with large solvodynamic size-switching of a main chain poly(azobenzene-alt-trisiloxane)

Author affiliations

Abstract

A photo-responsive linear poly(azobenzene) with an alternating sequence of azobenzene switching units connected by trisiloxane linkers was synthesised via step-growth polycondensation. By its design, the polymer features a high chromophore load (45 wt%) and a large number (≈130) of photoswitching units per chain. The ensuing photoisomerisation upon UV irradiation with 365 nm light was studied in several solvents and compared to the corresponding free azobenzene siloxane congener. Efficient EZ isomerisation with high conversion yields was observed for the polymeric and isolated azobenzenes alike. In the slightly polar solvents tetrahydrofuran (THF) and chloroform, this resulted in a photo-induced decrease in solvodynamic volume of 22% (THF) and 32% (chloroform). In n-hexane, however, a light-triggered collapse of the solvated polymer coil lead to a globular non-solvated form with a 70% decrease in volume. Ultrafast transient electronic absorption measurements showed that the underlying excited-state reaction pathways for the azobenzene units in the polymer main chain are essentially similar to those of the analogous single azobenzene in solution. The data suggest a sequential deactivation via ultrafast internal conversion from the initially excited S2 state to the S1 state, followed by intramolecular vibrational redistribution in the S1 state, and subsequent EZ isomerisation and deactivation to the electronic ground state. These processes are slowed down only moderately for the main chain azobenzene units compared to the free azobenzene in solution and conform to the accepted scenario for unsubstituted azobenzene. The results explain the efficient, nearly unconstrained isomerisation of the embedded molecular switching units that is highly unusual for a main chain azobenzene polymer. Due to the unique combination of a high chromophore load and large number of photo-switchable units in the main chain in a regular alternating architecture, coupled with a high conversion yield, the poly(azobenzene-alt-trisiloxane) should find applications as photo-responsive material, in particular when large switching amplitudes are essential.

Graphical abstract: Efficient reversible photoisomerisation with large solvodynamic size-switching of a main chain poly(azobenzene-alt-trisiloxane)

Back to tab navigation

Supplementary files

Article information


Submitted
20 Sep 2019
Accepted
09 Dec 2019
First published
10 Dec 2019

J. Mater. Chem. C, 2020, Advance Article
Article type
Paper

Efficient reversible photoisomerisation with large solvodynamic size-switching of a main chain poly(azobenzene-alt-trisiloxane)

M. Dowds, D. Bank, J. Strueben, D. P. Soto, F. D. Sönnichsen, F. Renth, F. Temps and A. Staubitz, J. Mater. Chem. C, 2020, Advance Article , DOI: 10.1039/C9TC05193G

Social activity

Search articles by author

Spotlight

Advertisements