Issue 1, 2020

Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours

Abstract

Lead-free double perovskite materials have attracted much interest for optoelectronic applications due to their nontoxicity and high stability. In this work, centimetre-sized Cs2AgBiBr6 single crystals were successfully grown using methylammonium bromide (MABr) as the flux by a top-seeded solution growth (TSSG) method. The low-temperature crystal structure of Cs2AgBiBr6 single crystals was determined and refined. To investigate the interface problems between Cs2AgBiBr6 single crystals and electrodes, the optical band gap, X-ray photoelectron spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) measurements were performed on Cs2AgBiBr6 single crystals. More importantly, we investigated the photodetectors based on Cs2AgBiBr6 single crystals with different contact electrodes (Au, Ag, and Al). It is found that a good Ohmic contact with Ag electrodes enables excellent photo-response behaviors. Furthermore, we studied the photodetectors based on Cs2AgBiBr6 single crystals using Ag electrodes under room and low temperature conditions, which underwent phase transition. Cs2AgBiBr6 single crystal photodetectors show clear differences at room and low temperatures, which is caused by the work function changes of Cs2AgBiBr6 single crystals induced by the reversible phase transition. These attractive properties may enable opportunities to apply emerging double perovskite single-crystalline materials for high-performance optoelectronic devices.

Graphical abstract: Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2019
Accepted
14 Nov 2019
First published
19 Nov 2019
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2020,8, 276-284

Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours

Y. Dang, G. Tong, W. Song, Z. Liu, L. Qiu, L. K. Ono and Y. Qi, J. Mater. Chem. C, 2020, 8, 276 DOI: 10.1039/C9TC04780H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements