Jump to main content
Jump to site search


Cationic dynamic covalent polymers for gene transfection

Author affiliations

Abstract

Dynamic covalent polymers are materials formed by reversible covalent bonds and non-covalent interactions through an adaptive constitutional dynamic chemistry. The implementation of dynamic covalent polymers in gene delivery has recently emerged due to their responsive and adaptive features. Indeed, such an approach offers the alluring promise of discovering optimal delivery vectors self-fitted to their nucleic acid cargos and responsive to environmental changes (e.g. pH changes or the presence of a biomolecular target). This review will discuss more precisely the structural features of the molecular building blocks used so far, the architecture of the resulting dynamic covalent polymers from linear to 2D and 3D, and the covalent and supramolecular self-assembly processes at play in nucleic acid recognition and delivery, showcasing in particular the very few examples of adaptive self-assembly of dynamic covalent polymers templated by nucleic acids and responsive to the presence of biomolecular targets found in cell membranes that facilitate cell entry.

Graphical abstract: Cationic dynamic covalent polymers for gene transfection

Back to tab navigation

Article information


Submitted
28 Jul 2020
Accepted
11 Sep 2020
First published
11 Sep 2020

J. Mater. Chem. B, 2020, Advance Article
Article type
Review Article

Cationic dynamic covalent polymers for gene transfection

D. Su, M. Coste, A. Diaconu, M. Barboiu and S. Ulrich, J. Mater. Chem. B, 2020, Advance Article , DOI: 10.1039/D0TB01836H

Social activity

Search articles by author

Spotlight

Advertisements