Issue 33, 2020

MOF nanoparticles with encapsulated dihydroartemisinin as a controlled drug delivery system for enhanced cancer therapy and mechanism analysis

Abstract

Dihydroartemisinin (DHA) has attracted increasing attention as an emerging therapeutic agent for tumor treatment. However, the clinical application of DHA is seriously limited owing to its inherent properties, including low solubility, poor selectivity, and fast clearance. Herein, we report a facile yet efficient strategy based on using zeolitic imidazolate framework-8 to load DHA (DHA@ZIF-8). The as-prepared DHA@ZIF-8 nanoparticles (NPs) possess high drug encapsulation efficiency (77.2%), favorable stability, good biocompatibility and controllable drug release in tumor acidic microenvironments. DHA@ZIF-8 NPs exhibit enhanced antitumor effects compared with free DHA in in vitro and in vivo therapy experiments, accompanied with negligible side effects. Furthermore, the antitumor mechanism of DHA@ZIF-8 NPs is well investigated by RNA sequencing (RNA-seq) and bioinformatics analysis. The results indicate that DHA@ZIF-8 NPs modify the expression of 7090 genes in HepG2 cells, and the mechanism may be related to the induction of apoptosis through a p53-mediated mitochondrial pathway and the suppression of glycolysis by inhibiting the PI3K/AKT pathway. This work highlights the potential of utilizing MOFs as a safe and stable platform for developing a highly efficient drug delivery system in cancer therapy, and the investigation of the antitumor mechanism can provide theoretical support for the clinical usage of DHA.

Graphical abstract: MOF nanoparticles with encapsulated dihydroartemisinin as a controlled drug delivery system for enhanced cancer therapy and mechanism analysis

Supplementary files

Article information

Article type
Paper
Submitted
26 May 2020
Accepted
26 Jun 2020
First published
30 Jun 2020

J. Mater. Chem. B, 2020,8, 7382-7389

MOF nanoparticles with encapsulated dihydroartemisinin as a controlled drug delivery system for enhanced cancer therapy and mechanism analysis

Y. Li, Y. Song, W. Zhang, J. Xu, J. Hou, X. Feng and W. Zhu, J. Mater. Chem. B, 2020, 8, 7382 DOI: 10.1039/D0TB01330G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements