Issue 18, 2020

A one-pot synthesis of multifunctional Bi2S3 nanoparticles and the construction of core–shell Bi2S3@Ce6–CeO2 nanocomposites for NIR-triggered phototherapy

Abstract

As a direct thin band gap n-type semiconductor, bismuth sulfide (Bi2S3) nanomaterials possess great near-infrared (NIR)-triggered photothermal effects, photoacoustic (PA) and computed tomography (CT) imaging properties. Hence, Bi2S3 nanomaterials have become a research focal point in multiple domains, such as the construction of NIR-triggered nanosystems for cancer therapy. In this study, through a simple one-pot synthesis with the assistance of EDTA-2Na, we first obtained monodispersed spherical Bi2S3 of uniform particle sizes with fascinating photothermal and PA/CT imaging properties. Based on this, we introduced the photosensitizer Ce6 with photodynamic property and CeO2 with the O2-evolving characteristic, and thus designed a core–shell structure of the Bi2S3@Ce6–CeO2 nanocomposites (Bi2S3@Ce6–CeO2 NCs). The as-received Bi2S3@Ce6–CeO2 NCs exhibited a remarkable synergetic photothermal and photodynamic therapeutic effect both in vitro and in vivo, demonstrating its promising potential for cancer treatments. In the long term, the multifunctional PA/CT properties of both Bi2S3 NPs and Bi2S3@Ce6–CeO2 NCs in this study also supply a novel Bi2S3-based platform for constructing integrated diagnosis and treatment platforms.

Graphical abstract: A one-pot synthesis of multifunctional Bi2S3 nanoparticles and the construction of core–shell Bi2S3@Ce6–CeO2 nanocomposites for NIR-triggered phototherapy

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2020
Accepted
18 Mar 2020
First published
20 Mar 2020

J. Mater. Chem. B, 2020,8, 4093-4105

A one-pot synthesis of multifunctional Bi2S3 nanoparticles and the construction of core–shell Bi2S3@Ce6–CeO2 nanocomposites for NIR-triggered phototherapy

L. Zeng, H. Zhao, Y. Zhu, S. Chen, Y. Zhang, D. Wei, J. Sun and H. Fan, J. Mater. Chem. B, 2020, 8, 4093 DOI: 10.1039/D0TB00080A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements