Jump to main content
Jump to site search

Issue 47, 2020
Previous Article Next Article

Voltage bias stress effects in metal halide perovskites are strongly dependent on morphology and ion migration pathways

Author affiliations

Abstract

The solar-to-power power conversion efficiencies (PCEs) of metal halide perovskites (MHP) have improved over the last decade using a wide variety of methods, including composition manipulation, dopant introduction, and interfacial buffers. These methods, however, have taken little regard for the electronic and interfacial effects such alterations may cause within devices under voltage bias stress – a condition required for most device operation. We investigate how halide and cation substitution in MHP structures [specifically, CH3NH3PbI2.87Cl0.13 and Cs0.1(MA0.17FA0.83)0.9Pb(I0.83Br0.17)3] effects the current behavior of devices while under a range of voltage bias stress in both light and dark conditions. Conducting in depth investigations into the electronic and morphological differences between these two MHP devices, we confirmed their unique voltage bias stress effects are due to intrinsic behavior within the perovskite structure. Importantly, we also determined how crystallite orientation can influence ion migration and therefore alter charge transport and current stability in MHP photovoltaic devices.

Graphical abstract: Voltage bias stress effects in metal halide perovskites are strongly dependent on morphology and ion migration pathways

Back to tab navigation

Supplementary files

Article information


Submitted
24 Oct 2020
Accepted
19 Nov 2020
First published
20 Nov 2020

J. Mater. Chem. A, 2020,8, 25109-25119
Article type
Paper

Voltage bias stress effects in metal halide perovskites are strongly dependent on morphology and ion migration pathways

L. Flannery, J. Ogle, D. Powell, C. Tassone and L. Whittaker-Brooks, J. Mater. Chem. A, 2020, 8, 25109
DOI: 10.1039/D0TA10371C

Social activity

Search articles by author

Spotlight

Advertisements