The influence of ruthenium substitution in LaCoO3 towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries†
Abstract
The rechargeable zinc–air battery is a clean technology for energy storage applications but is impeded by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during its cycling. Herein, a series of lanthanum cobaltate based perovskites are synthesised with the B-site cation deficiencies in the structure occupied by Ru substitution: LaCo1−xRuxO3−δ (x = 0, 0.1, 0.2, 0.3 and 0.5). These compositions were designed to enhance the OER/ORR activities, which are two vital reactions for rechargeable Zn–air batteries. Powder X-ray diffraction analysis revealed that increasing the Ru substitution >20% (x > 0.2) alters the LaCoO3 crystal structure from rhombohedral to orthorhombic. Photoelectron spectroscopy studies reveal that the surface oxygen vacancies increased in the Ru substituted catalyst, a property important for enhancing the OER/ORR efficiency. The LaCo0.8Ru0.2O3−δ (LCRO82) catalyst exhibits promising electrocatalytic activities in both the OER and the ORR in 0.1 M KOH solution. Furthermore, the LCRO82 catalyst was evaluated as a cathode for rechargeable Zn–air battery applications displaying a high power density of 136 mW cm−2 at a current density of 175 mA cm−2 and a stable charge–discharge voltage gap of 0.78 V after 1440 cycles, with excellent cycling stability over 240 h.