Jump to main content
Jump to site search


Supramolecular silicone dielectric elastomer with high dielectric constant, fast and highly efficient self-healing at mild conditions

Abstract

Dielectric elastomer (DE) materials suffer from high driving voltages and cracks or breaks during repetitive actuation circles. New DE materials with simultaneous high dielectric constant (ε’), fast and efficient self-healing ability are in urgent need. Herein, we report a self-healable silicone DE by constructing supramolecular network assembled by coordination bonds between carboxylated polymethylvinylsiloxane (PMVS-COOH) and FeCl3 as well as hydrogen bonds between carboxyl groups through introducing FeCl3 into PMVS-COOH. Both experimental results and density function theory indicate that Fe3+/COO- complex are formed and can further aggregate into clusters, which can simultaneously realize the crosslinking of PMVS-COOH and introduce interfacial polarization. Interestingly, the interfacial polarization largely increases with increasing FeCl3 content and FeCl3 can promote dipole polarization by disrupting part of hydrogen bonds and releasing carboxyl groups when FeCl3 content is higher than 5%, leading to a significant enhancement in ε’. The as prepared PMVS-COOH/FeCl3 (SiR-Fe) DE with 8% FeCl3 shows comparatively high ε’ (12.3 at 104 Hz), much higher than commercial silicone DE (~2.7) or PMVS-COOH (6.1). Meanwhile, a self-healing efficiency of 99% in tensile strength and 100% in tensile toughness are achieved for SiR-Fe with 8% FeCl3 after being treated for 1h at room temperature. This is ascribed to the high chain mobility of SiR-Fe and the robust supramolecular dynamic network resulting from the combination of coordination bonds and hydrogen bonds. It is demonstrated that SiR-Fe can be effectively used as dielectric elastomer sensors. And it is promising that this highly efficient self-healable SiR-Fe DE with high ε’ finds applications especially in biological and medical fields.

Back to tab navigation

Supplementary files

Article information


Submitted
06 Jul 2020
Accepted
14 Oct 2020
First published
15 Oct 2020

J. Mater. Chem. A, 2020, Accepted Manuscript
Article type
Paper

Supramolecular silicone dielectric elastomer with high dielectric constant, fast and highly efficient self-healing at mild conditions

H. Sun, X. Liu, S. Liu, B. Yu, N. Ning, M. Tian and L. Zhang, J. Mater. Chem. A, 2020, Accepted Manuscript , DOI: 10.1039/D0TA06577C

Social activity

Search articles by author

Spotlight

Advertisements