Issue 29, 2020

An intermeshing electron transporting layer for efficient and stable CsPbI2Br perovskite solar cells with open circuit voltage over 1.3 V

Abstract

Inorganic CsPbI2Br perovskite has gained great attention due to its outstanding overall stability and great potential for application in semitransparent and tandem solar cells. However, the power conversion efficiencies (PCEs) of CsPbI2Br-based perovskite solar cells (pero-SCs) are being limited by their severe energy loss (Eloss) due to the unfavorable device interface and defects. Here, an intermeshing SnO2 (Im-SnO2) electron transporting layer (ELF) is subtly constructed by combining two types of SnO2 with complementary electronic/physical properties for suppressing the notorious Eloss. With this strategy, the defects of the conventional SnO2 ETL can be greatly improved, which could simultaneously facilitate charge extraction, increase the crystallinity and orientation of CsPbI2Br films, and form a cascade energy level in the device. Consequently, the Eloss of CsPbI2Br pero-SCs can be remarkably reduced to below 0.6 eV, delivering an excellent PCE of 16.10% with a Voc as high as 1.31 V. To the best of our knowledge, these results are among the best reported for a few CsPbI2Br pero-SCs that enable high Voc without sacrificing efficiency. In addition, the devices show high stability under both strong UV irradiation for 300 h and an ambient atmosphere for 1000 h.

Graphical abstract: An intermeshing electron transporting layer for efficient and stable CsPbI2Br perovskite solar cells with open circuit voltage over 1.3 V

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2020
Accepted
24 Jun 2020
First published
25 Jun 2020

J. Mater. Chem. A, 2020,8, 14555-14565

An intermeshing electron transporting layer for efficient and stable CsPbI2Br perovskite solar cells with open circuit voltage over 1.3 V

S. Liu, W. Chen, Y. Shen, S. Wang, M. Zhang, Y. Li and Y. Li, J. Mater. Chem. A, 2020, 8, 14555 DOI: 10.1039/D0TA04275G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements