Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Lewis Acid/Base Approach for Efficacious Defect Passivation in Perovskite Solar Cells


Halide perovskite solar cells (PSCs) have been materialized as a hotspot in next-generation photovoltaic technology due to their low-cost manufacturing process and high-efficiency characteristics. However, the defects within bulk or in the grain boundaries and surface hinder ambipolar charge transport as non-radiative recombination centers. Efficacious defect passivation is therefore highly desired for high-efficiency and stable PSCs. Herein, a feasible Lewis acid/base passivation strategy and its effects on energy level alignment, recombination kinetics, hysteresis behavior and operational stability for efficient PSCs are comprehensively reviewed. Theses additives have been widely used to coordinate with unwanted defects and form Lewis adducts by dative bonds, where Lewis acid contributes to passivate negatively charged defects (e.g., under-coordinated I ions and Pb-I anti-sites) and Lewis base plays a significant role in passivating positively charged defects (e.g., under-coordinated Pb2+ and Pb2+ interstitials), whereas zwitterions could passivate negatively and positively charged defects simultaneously. This highly executable Lewis adduct passivation would enable scalable deposition techniques for efficient and stable PSCs like inkjet printing, doctor-blade coating, screen printing, laser pattering and roll-to-roll deposition. Additionally, we also discuss the prospects for the mature of this passivation strategy towards upscaling manufacture of perovskite photovoltaic and related optoelectronic devices.

Back to tab navigation

Article information

11 Apr 2020
21 May 2020
First published
21 May 2020

J. Mater. Chem. A, 2020, Accepted Manuscript
Article type
Review Article

Lewis Acid/Base Approach for Efficacious Defect Passivation in Perovskite Solar Cells

S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. S. Li, L. Ding and F. Hao, J. Mater. Chem. A, 2020, Accepted Manuscript , DOI: 10.1039/D0TA03957H

Social activity

Search articles by author