Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis

Author affiliations

Abstract

The rapid surface oxidation of phosphorene under ambient conditions is considered to be a serious issue for many applications, but is used here as a strategy to achieve efficient heteroatom doping. Highly crystalline nitrogen-doped phosphorene (N-phosphorene) is prepared using a combination of ball milling and microwave techniques. The prepared N-doped phosphorene nanosheets showed outstanding electrocatalytic performance as a new type of non-metallic catalyst for nitrogen (N2) to ammonia (NH3) conversion, with an NH3 yield rate and faradaic efficiency (FE) of up to 18.79 μg h−1 mgCAT−1 and 21.51%, respectively, at a low overpotential (0 V) versus the reversible hydrogen electrode (RHE). Density functional theory calculations revealed that the high nitrogen reduction reaction (NRR) FEs originate from the increased hydrophobicity at the N and O doped phosphorene surfaces, which in turn hinders the competing hydrogen evolution reaction (HER) in an alkaline environment and promotes the NRR. This work not only introduces an efficient strategy to chemically functionalize 2D phosphorene, but also opens a new avenue in using N-doped phosphorene nanosheets as a metal-free catalyst.

Graphical abstract: Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis

Back to tab navigation

Supplementary files

Article information


Submitted
21 Mar 2020
Accepted
07 May 2020
First published
07 May 2020

J. Mater. Chem. A, 2020, Advance Article
Article type
Paper

Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis

G. Xu, H. Li, A. S. R. Bati, M. Bat-Erdene, M. J. Nine, D. Losic, Y. Chen, J. G. Shapter, M. Batmunkh and T. Ma, J. Mater. Chem. A, 2020, Advance Article , DOI: 10.1039/D0TA03237A

Social activity

Search articles by author

Spotlight

Advertisements