Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous Zn–CO2 system

Author affiliations

Abstract

Developing a cost-effective, scalable, and efficient electrocatalyst for the hydrogen evolution reaction (HER) is the heart of producing pure hydrogen in practical applications. In this work, a unique approach to allow ruthenium (Ru) nanoparticles on carboxyl-functionalized porous sphere carbon (CF-Ru@PSC) for an aqueous Zn–CO2 system is reported. The CF-Ru@PSC catalyst was produced by inducing additional junction sites between metallic Ru and the carbon substrate for enhanced HER properties under a CO2 saturated condition. The strongly bonded Ru–C caused electron transfer from the bottom side of the metallic Ru to the PSC substrate, leading to efficient hydrogen adsorption energy of the surface. The DFT calculations and XAFS investigation suggested that the reconstructed electronic configuration from the Ru–C linkage acted as an efficient active site for HER. The CF-Ru@PSC electrocatalyst presented a high turnover frequency of 2.70H2 s−1 at an overpotential of 0.20 V in the CO2-saturated condition and high Faraday efficiency (98.2%) over 1000 min in the aqueous Zn–CO2 system.

Graphical abstract: Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous Zn–CO2 system

Back to tab navigation

Associated articles

Supplementary files

Article information


Submitted
17 Mar 2020
Accepted
13 May 2020
First published
29 May 2020

J. Mater. Chem. A, 2020, Advance Article
Article type
Paper

Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO2-saturated media for an aqueous Zn–CO2 system

J. Kim, Y. Yang, A. Seong, H. Noh, C. Kim, S. Joo, A. Cho, L. Zhang, J. Zhou, J. Wang, J. W. Han, J. Mahmood, J. Baek and G. Kim, J. Mater. Chem. A, 2020, Advance Article , DOI: 10.1039/D0TA03050C

Social activity

Search articles by author

Spotlight

Advertisements