Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Molecular-Level Environments of Intercalated Chloroaluminate Anions in Rechargeable Aluminum-Graphite Batteries Revealed by Solid-State NMR Spectroscopy

Abstract

Rechargeable aluminum-graphite batteries are an emerging energy storage technology with great promise: they exhibit high rate performance, cyclability, and a discharge potential of 2 V, while both electrodes are globally abundant, low cost, and inherently safe. The batteries use chloroaluminate-containing electrolytes and store charge in the graphite electrodes when molecular AlCl4- chloroaluminate anions electrochemically intercalate within them. However, much remains to be understood regarding the ion intercalation mechanism, in part due to the challenges associated with characterizing the chloroaluminate anions themselves. Here, we use solid-state 27Al nuclear magnetic resonance (NMR) spectroscopy to probe the molecular-level electronic and magnetic environments of intercalated chloroaluminate species at different stages-of-charge. The results reveal broad 27Al NMR signals associated with intercalated AlCl4- anions, reflecting high extents of local disorder. The intercalated chloroaluminate anions experience a diversity of local environments, many of which are far from the ideal crystalline-like structures often depicted in graphite staging models. Density functional theory (DFT) calculations of the total 27Al isotropic shifts enable the contributions of chemical shift, ring-current effects, and quadrupolar interactions to be quantitatively disentangled. In combination, the solid-state NMR and DFT results reveal new insights into the molecular geometries and environments of AlCl4- anions at different extents of intercalation.

Back to tab navigation

Supplementary files

Article information


Submitted
06 Mar 2020
Accepted
29 Jun 2020
First published
29 Jun 2020

J. Mater. Chem. A, 2020, Accepted Manuscript
Article type
Paper

Molecular-Level Environments of Intercalated Chloroaluminate Anions in Rechargeable Aluminum-Graphite Batteries Revealed by Solid-State NMR Spectroscopy

J. H. Xu, A. L. Jadhav, D. E. Turney and R. J. Messinger, J. Mater. Chem. A, 2020, Accepted Manuscript , DOI: 10.1039/D0TA02611E

Social activity

Search articles by author

Spotlight

Advertisements