Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Conjugated side-chain engineering of polymer donors enabling improved efficiency for polymer solar cells

Author affiliations

Abstract

Generally, molecular optimization is widely used to fine-tune the absorption features and energy levels of photovoltaic materials to improve their photovoltaic performance for polymer solar cells (PSCs). In this work, we demonstrate an example that the morphological properties can be effectively optimized by conjugated side-chain engineering on the benzo[1,2-b:4,5-b′]dithiophene (BDT) unit. The polymer donors PBNT-S with an alkylthio-thienyl substituent and PBNP-S with an alkylthio-phenyl substituent have identical absorption spectra and energy levels, while exhibiting significantly different morphological properties when blended with nonfullerene acceptor Y6. The PBNT-S:Y6 blend shows obviously excessive crystallinity with excessive domain sizes, while the PBNP-S:Y6 blend realizes better nanoscale phase separation. As a result, a notable power conversion efficiency (PCE) of 14.31% with a high fill factor (FF) of 0.694 is achieved in the PBNP-S:Y6-based device, while the PBNT-S:Y6-based device yields a moderate PCE of 11.10% and a relatively low FF of 0.605. Additionally, PBNP-S shows great potential in semitransparent PSCs, and the PBNP-S:Y6-based semitransparent PSC achieves an outstanding PCE of 11.86%, with an average visible transmittance of 24.3%. The results demonstrate a feasible strategy to manipulate the morphological properties of blend films via rational molecular optimization to improve the photovoltaic performance.

Graphical abstract: Conjugated side-chain engineering of polymer donors enabling improved efficiency for polymer solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
06 Feb 2020
Accepted
14 May 2020
First published
14 May 2020

J. Mater. Chem. A, 2020, Advance Article
Article type
Paper

Conjugated side-chain engineering of polymer donors enabling improved efficiency for polymer solar cells

H. Fan, H. Yang, Y. Zou, Y. Dong, D. Fan, Y. Zheng, Y. Wu, C. Cui and Y. Li, J. Mater. Chem. A, 2020, Advance Article , DOI: 10.1039/D0TA01425G

Social activity

Search articles by author

Spotlight

Advertisements