Jump to main content
Jump to site search


Graphene Encapsulated Metallic State Ce2Sn2O7 as a Novel Anode Material for Superior Lithium-Ion Batteries and Capacitors

Abstract

The development of bimetallic-based ternary materials (BTMs) has attracted much attention due to their multi-component flexibility and synergistic effect. Herein, the BTMs (Ce2Sn2O7) nanoparticles are encapsulated into graphene (Ce2Sn2O7/RGO), which is served as a novel anode material for lithium-ion batteries and capacitors (LIBs/LICs). Benefiting from the synergistic effects from two metals elements and the conductive networks of graphene, the optimized Ce2Sn2O7/RGO delivers a reversible capacity of 814.6 mAh g-1 at 0.05 A g-1, good cycling performance with reversible capacity of 369.5 mAh g-1 after 1500 cycles at 1 A g-1 and superior rate capability of 432.4 mAh g-1 at 2 A g-1) in Li+ half cells. Meanwhile, the detailed phase transition and kinetics analysis as well as the theoretical calculation are performed to investigate the reaction mechanisms behind the good electrochemical performance. Furthermore, the Ce2Sn2O7/RGO also shows good lithium-ion full cell and capacitor performance coupled with commercial LiCoO2 and activated carbon, respectively, which further demonstrates the application prospect of the Ce2Sn2O7/RGO.

Back to tab navigation

Supplementary files

Article information


Submitted
29 Nov 2019
Accepted
09 Feb 2020
First published
10 Feb 2020

J. Mater. Chem. A, 2020, Accepted Manuscript
Article type
Paper

Graphene Encapsulated Metallic State Ce2Sn2O7 as a Novel Anode Material for Superior Lithium-Ion Batteries and Capacitors

Q. Wu, Y. Liu, H. Wang, J. Hou, Y. Li and Q. Duan, J. Mater. Chem. A, 2020, Accepted Manuscript , DOI: 10.1039/C9TA13086A

Social activity

Search articles by author

Spotlight

Advertisements