Jump to main content
Jump to site search

Issue 5, 2020
Previous Article Next Article

Single-step solid-state synthesis and characterization of Li4Ti5−xFexO12−y (0 ≤ x ≤ 0.1) as an anode for lithium-ion batteries

Author affiliations

Abstract

We carried out a single-step doping reduction, Li4Ti5−xFexO12−y (0 ≤ x ≤ 0.1) with Fe, by a facile solid-phase method with the objective of improving the electrochemical performance of Li4Ti5O12 (LTO). Unlike the conventional method of using an Fe salt as a dopant, elemental Fe is used here as both a reducing agent and a dopant. The Fe first reacts with TiO2 to form Ti3+ and Fe3+ ions; the Fe3+ ions then incorporate into the TiO2 crystal lattice through substitution of Ti by Fe; the amount of Ti3+/Ti4+ is increased as a result of charge compensation, which further improves the conductivity of the LTO, resulting in high electrochemical performance. The investigation of the electrochemical performance of lithium-ion batteries under low-voltage conditions is important for assessing their safety. Because LTO can provide a higher battery voltage and a discharge capacity at a lower voltage, the electrochemical behavior of LTO in the voltage range 0–3 V was also investigated. The modified Li4Ti5−xFexO12−y exhibits a capacity of 228.7 mA h g−1 after 200 cycles, which is substantially higher than that of pure LTO (176.3 mA h g−1). In addition, the band structure and density of states (DOS) of the original and Fe-doped Li4Ti5O12 were calculated by first-principles calculations. The Li4Ti5−xFexO12−y (0 ≤ x ≤ 0.1) can provide a higher voltage, enabling its broad application in lithium-ion batteries because of its large discharge range, good electrochemical performance, and simple synthesis process.

Graphical abstract: Single-step solid-state synthesis and characterization of Li4Ti5−xFexO12−y (0 ≤ x ≤ 0.1) as an anode for lithium-ion batteries

Back to tab navigation

Supplementary files

Article information


Submitted
04 Nov 2019
Accepted
03 Jan 2020
First published
06 Jan 2020

J. Mater. Chem. A, 2020,8, 2627-2636
Article type
Paper

Single-step solid-state synthesis and characterization of Li4Ti5−xFexO12−y (0 ≤ x ≤ 0.1) as an anode for lithium-ion batteries

G. Yang and S. Park, J. Mater. Chem. A, 2020, 8, 2627
DOI: 10.1039/C9TA12117J

Social activity

Search articles by author

Spotlight

Advertisements