Jump to main content
Jump to site search


Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells

Author affiliations

Abstract

We report morphological control with phenyl-C60-butyric acid methyl ester (PCBM) molecular aggregation for perovskite–PCBM bulk heterostructure (Pe–PCBM BHS) solar cells. Solar cells prepared via the Pe–PCBM BHS method exhibited a higher power conversion efficiency (PCE) of 18% than 11% from a device with a conventional planar heterojunction structure. The Pe–PCBM BHS can enhance device efficiency by improving electron transfer, shortening the electron transport length required for collection, and reducing the charge transfer resistance at the interface between the perovskite and PCBM through an increase of the perovskite crystal size and construction of a vertical perovskite–PCBM intermixing zone. To the best of our knowledge, the high PCE achieved by our Pe–PCBM BHS is the highest value to be reported in an inverted perovskite solar cell without buffer layers, such as metal oxides or low work function metals.

Graphical abstract: Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
28 Oct 2019
Accepted
10 Dec 2019
First published
20 Dec 2019

J. Mater. Chem. A, 2020, Advance Article
Article type
Paper

Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells

S. R. Ha, W. H. Jeong, Y. Liu, J. T. Oh, S. Y. Bae, S. Lee, J. W. Kim, S. Bandyopadhyay, H. I. Jeong, J. Y. Kim, Y. Kim, M. H. Song, S. H. Park, S. D. Stranks, B. R. Lee, R. H. Friend and H. Choi, J. Mater. Chem. A, 2020, Advance Article , DOI: 10.1039/C9TA11854C

Social activity

Search articles by author

Spotlight

Advertisements