Jump to main content
Jump to site search


Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors

Author affiliations

Abstract

Blue-luminescent N-doped carbon quantum dots (NCQDs) exhibiting rarely observed excitation independent optical properties are synthesised from citric acid in the presence of ammonia via a Continuous Hydrothermal Flow Synthesis (CHFS) approach. CHFS is an eco-friendly, rapid synthetic approach (within fractions of a second) facilitating ease of scale-up industrialization as well as offering materials with superior properties. The synthesised NCQDs readily disperse in aqueous solution, have an average particle size of 3.3 ± 0.7 nm, with highest emission intensity at 441 nm (and a narrow full width at half maximum, FWHM ∼78 nm) under a 360 nm excitation wavelength. N-doped carbon quantum dots, without any further modification, exhibited a high selectivity and sensitivity as a nano-sensor for the highly toxic and carcinogenic chromium(VI) ions. The nano-chemo-sensor delivers significant advantages including simplicity of manufacturing via a continuous, cleaner technology (using targeted biomass precursor), high selectivity, sensitivity and fast response leading to potential applications in environmental industry as well photovoltaics, bio-tagging, bio-sensing and beyond.

Graphical abstract: Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors

Back to tab navigation

Supplementary files

Article information


Submitted
25 Oct 2019
Accepted
10 Jan 2020
First published
10 Jan 2020

J. Mater. Chem. A, 2020, Advance Article
Article type
Paper

Continuous hydrothermal flow synthesis of blue-luminescent, excitation-independent nitrogen-doped carbon quantum dots as nanosensors

I. Baragau, N. P. Power, D. J. Morgan, T. Heil, R. A. Lobo, C. S. Roberts, M. Titirici, S. Dunn and S. Kellici, J. Mater. Chem. A, 2020, Advance Article , DOI: 10.1039/C9TA11781D

Social activity

Search articles by author

Spotlight

Advertisements