Jump to main content
Jump to site search

Eutectoid Nano-precipitations inducing Remarkably Enhanced Thermoelectric Performance in (Sn1-xCdxTe)1-y(Cu2Te)y


Due to its similar crystallographic and electronic band structure with PbTe, SnTe becomes a natural alternative of PbTe for promising mid-temperature thermoelectric power generation and refrigeration. The bottleneck which restricts the thermoelectric performance of SnTe lies mainly in its relatively high lattice thermal conductivity. In this work, we found that co-doping SnTe with Cd and Cu2Te leads to “eutectoid” precipitation of CdTe- and Cu2Te- based nano-phases, which (together with Cu interstitials) can reduce the lattice thermal conductivity from ~1.0 W/m K for pristine SnTe to a remarkably lower level of ~0.42 Wm−1K−1 for (Sn0.95Cd0.05Te)0.95(Cu2Te)0.05 at 823 K. With further valence band convergence by CdSn substitution and carrier concentration optimization by I- doping, we obtained a significantly enhanced figure of merit ZT ~1.42 at 823 K in (Sn0.95Cd0.05Te)0.93(Cu2Te)0.07-1%I. Interestingly, temperature dependent XRD measurements excluded the dynamic solution of CdTe- or Cu2Te- in SnTe matrix and consequent phonon scattering reinforcement as reported. Overall, our finding of “eutectoid” precipitation of high-density CdTe/Cu2Te nano-phases, as strong scatters for mid-frequency heat-carrying phonons, might shed light on future studies on reducing lattice thermal conductivity in SnTe- and related thermoelectric material systems.

Back to tab navigation

Supplementary files

Article information

10 Oct 2019
03 Jan 2020
First published
06 Jan 2020

J. Mater. Chem. A, 2020, Accepted Manuscript
Article type

Eutectoid Nano-precipitations inducing Remarkably Enhanced Thermoelectric Performance in (Sn1-xCdxTe)1-y(Cu2Te)y

X. Qi, Y. Huang, D. Wu, B. Jiang, B. Zhu, X. Xu, J. Feng, B. Jia, Z. Shu and J. He, J. Mater. Chem. A, 2020, Accepted Manuscript , DOI: 10.1039/C9TA11180H

Social activity

Search articles by author