Issue 2, 2020

Reversible and irreversible colossal barocaloric effects in plastic crystals

Abstract

The extremely large latent heat exchanged in phase transitions involving strong molecular orientational disordering has recently led to the proposal of plastic crystals as a feasible solution for solid-state barocaloric eco-friendly cooling technologies. Here we determine the reversible barocaloric response of four plastic crystals derived from neopentane [C(CH3)4]: (NH2)C(CH2OH)3 (TRIS for short), (NH2)(CH3)C(CH2OH)2 (AMP), (CH3)C(CH2OH)3 (PG) and (CH3)3C(CH2OH) (NPA). All of them display colossal entropy changes at their ordered-plastic phase transition, which is a primal requirement for competitive barocaloric materials. However, we show that it is also important to verify that the large barocaloric effects can be achieved using pressures that, while being moderate, are large enough to overcome the pressure-dependent hysteresis. From this quantity and using the quasi-direct method, we determine the minimum pressure needed to achieve reversible barocaloric effects, prev, for each compound. Specifically, we find a small and moderate prev for PG and NPA, respectively, which therefore display colossal reversible barocaloric effects comparable to harmful fluids used in current refrigerators and thus confirm the potential of plastic crystals as excellent alternatives. Instead, in TRIS and AMP, the obtained prev is excessive to yield reversible barocaloric effects useful for cyclic applications.

Graphical abstract: Reversible and irreversible colossal barocaloric effects in plastic crystals

Article information

Article type
Paper
Submitted
04 Oct 2019
Accepted
08 Nov 2019
First published
09 Nov 2019

J. Mater. Chem. A, 2020,8, 639-647

Reversible and irreversible colossal barocaloric effects in plastic crystals

A. Aznar, P. Lloveras, M. Barrio, P. Negrier, A. Planes, L. Mañosa, N. D. Mathur, X. Moya and J. Tamarit, J. Mater. Chem. A, 2020, 8, 639 DOI: 10.1039/C9TA10947A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements