Issue 41, 2020

Surface temperature transition of a controllable evaporating droplet

Abstract

Surface temperature is a critical factor affecting the droplet evaporation; however, it is a continuous matter under discussion. We design controllable experiments for sessile ethanol droplet evaporation to investigate the surface temperature distribution evolution. It is found that the evaporation process of a droplet with a constant contact radius can involve five phases: non-wave phase, onset of thermal waves, decrease of thermal waves, transition phase, and final non-wave phase. Under fixed evaporation conditions and a fixed substrate temperature, the phase sequence is solely dependent on the instantaneous contact angle, but independent of the droplet initial volume. Three typical radial temperature distributions are observed at the evaporating droplet surface: a monotonic decrease from the edge to the apex; a nonmonotonic distribution with the highest temperature observed between the edge and the apex; or a monotonic increase from the edge to the apex. The three temperature distributions and the two transitions between them are responsible for the five phases in the evaporation process. However, the early phases may not exist in the sessile droplet with a relatively small initial contact angle. Both the evaporation pressure and the substrate temperature can affect the occurrence of the five phases in the evaporation process. It is noteworthy that the splitting and merging of thermal waves occur simultaneously during evaporation. During the decrease of the thermal waves phase, the number of waves decreases linearly with the contact angle tangent. The decreasing slope is influenced by the evaporation pressure and the substrate temperature.

Graphical abstract: Surface temperature transition of a controllable evaporating droplet

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2020
Accepted
03 Sep 2020
First published
04 Sep 2020

Soft Matter, 2020,16, 9568-9577

Surface temperature transition of a controllable evaporating droplet

L. Shen, J. Ren and F. Duan, Soft Matter, 2020, 16, 9568 DOI: 10.1039/D0SM01381A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements