Issue 35, 2020

Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs

Abstract

Opening a way to designing tunable interactions between colloidal particles in rotating electric and magnetic fields provides rich opportunities both for fundamental studies of phase transitions and engineering of soft materials. Spatial hodographs, showing the distribution of the field magnitude and orientation, allow the adjustment of interactions and can be an extremely potent tool for prospective experiments, but remain unstudied systematically. Here, we calculate the tunable interactions between spherical particles in rhodonea, conical, cylindrical, and ellipsoidal field hodographs, as the most experimentally important cases. We discovered that spatial hodographs are reduced to each other, providing a plethora of interactions, e.g., repulsive, attractive, barrier-like, and double-scale repulsive ones. Complementing the “magic” conical angle, the “magic” compression and ellipticity of cylindrical and ellipsoidal hodographs are introduced. In the “magic” hodographs, the interactions become spatially isotropic and attain dispersion-force-like asymptotic (the same for pairwise and many-body energies), being attractive or repulsive, if the particle permittivity is larger or smaller than that of the solvent. With the diagrammatic method and numerical calculations, we obtained physically meaningful fits to the many-body tunable potentials for silica (iron oxide) particles in deionised water in the rotating electric (magnetic) fields. Our results provide essential guidance for future experiments and simulations of colloidal liquids, crystals, gels, and glasses, important for a broad range of problems in condensed matter, chemical physics, physical chemistry, materials science, and soft matter.

Graphical abstract: Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs

Article information

Article type
Paper
Submitted
04 Jun 2020
Accepted
20 Jul 2020
First published
23 Jul 2020

Soft Matter, 2020,16, 8155-8168

Colloids in rotating electric and magnetic fields: designing tunable interactions with spatial field hodographs

K. A. Komarov and S. O. Yurchenko, Soft Matter, 2020, 16, 8155 DOI: 10.1039/D0SM01046D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements