Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Efficient electroosmotic mixing in a narrow-fluidic channel: the role of a patterned soft layer

Author affiliations

Abstract

We propose a novel and efficient mixing technique in a soft narrow-fluidic channel under the influence of electrical forcing. We show that a grafted polyelectrolyte layer (PEL) added as a patch to the channel wall modulates the electrical double layer (EDL) so that an applied electric field initiates a local electroosmotic flow (EOF) at the patched section. This EOF develops in the opposite direction to the primary pressure-driven flow. This localized EOF leads to the formation of Lamb vortices at the patched sections through the phenomenon of momentum exchange with the primary stream and promotes the mixing therein. Our study, consistent with the stream-function/vorticity approach, primarily focuses on the numerical analysis of the mixing phenomena. Through a quantitative description, we reveal the effect of different patterns on the underlying mixing phenomena in the convective mixing regime. We also discuss the impact of key parameters on the mixing efficiency, the onset of the recirculation zone, variation in the mixing length, and the shear-driven aggregation kinetics in soft matter systems. Finally, considering the practicability of the present problem, we unveil the values of several design parameters for which the mixing efficiency in the channel reaches the maximum.

Graphical abstract: Efficient electroosmotic mixing in a narrow-fluidic channel: the role of a patterned soft layer

Back to tab navigation

Supplementary files

Article information


Submitted
14 May 2020
Accepted
12 Jun 2020
First published
12 Jun 2020

Soft Matter, 2020, Advance Article
Article type
Paper

Efficient electroosmotic mixing in a narrow-fluidic channel: the role of a patterned soft layer

H. S. Gaikwad, G. Kumar and P. K. Mondal, Soft Matter, 2020, Advance Article , DOI: 10.1039/D0SM00890G

Social activity

Search articles by author

Spotlight

Advertisements