Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells

Author affiliations

Abstract

Predicting the mechanical properties of organic semiconductors is important when using these materials in flexible electronics applications. For instance, knowledge of the mechanical and thermal stability of thin film organic solar cells (OSCs) is critical for the roll-to-roll production of photovoltaic devices and their use under various operating conditions. Here, we examine the thermal and elasto-mechanical properties of the conjugated donor polymer poly-(3-hexylthiophene) (P3HT) and the interpenetrating mixtures of P3HT and phenyl-C61-butyric acid methyl (PCBM) ester bulk heterojunction (BHJ) active layers under the application of unidirectional tensile deformation using coarse-grained molecular dynamics (CGMD) simulations. The predictions are validated against previous experimental reports as well as with earlier modeling results derived using different intermolecular force fields. Our results reveal that PCBM molecules behave as anti-plasticizers when mixed with P3HT and tend to increase the tensile modulus and glass transition temperature, while decreasing the crack-onset strain relative to pure P3HT. The variations in the mechanical properties with the composition of the BHJ active layer suggest that, in the presence of small oligomers as additives in the BHJ, the P3HT:PCBM mixture resists the anti-plasticizing effect of PCBM molecules due to the low tensile modulus of the short polymer chains.

Graphical abstract: Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells

Back to tab navigation

Supplementary files

Article information


Submitted
10 May 2020
Accepted
15 Jun 2020
First published
16 Jun 2020

Soft Matter, 2020, Advance Article
Article type
Paper

Elasto-morphology of P3HT:PCBM bulk heterojunction organic solar cells

J. Munshi, T. Chien, W. Chen and G. Balasubramanian, Soft Matter, 2020, Advance Article , DOI: 10.1039/D0SM00849D

Social activity

Search articles by author

Spotlight

Advertisements