Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 29, 2020

Fundamentals of soft thermofluidic system design

Author affiliations


The soft composition of many natural thermofluidic systems allows them to effectively move heat and control its transfer rate by dynamically changing shape (e.g. dilation or constriction of capillaries near our skin). So far, making analogous deformable “soft thermofluidic systems” has been limited by the low thermal conductivity of materials with suitable mechanical properties. By remaining soft and stretchable despite the addition of filler, elastomer composites with thermal conductivity enhanced by liquid-metal micro-droplets provide an ideal material for this application. In this work, we use these materials to develop an elementary thermofluidic system consisting of a soft, heat generating pipe that is internally cooled with flow of water and explore its thermal behavior as it undergoes large shape change. The transient device shape change invalidates many conventional assumptions employed in thermal design making analysis of this devices’ operation a non-trivial undertaking. To this end, using time scale analysis we demonstrate when the conventional assumptions break down and highlight conditions under which the quasi-static assumption is applicable. In this gradual shape modulation regime the actuated devices’ thermal behavior at a given stretch approaches that of a static device with equivalent geometry. We validate this time scale analysis by experimentally characterizing thermo-fluidic behavior of our soft system as it undergoes axial periodic extension–retraction at varying frequencies during operation. By doing so we explore multiple shape modulation regimes and provide a theoretical foundation to be used in the design of soft thermofluidic systems undergoing transient deformation.

Graphical abstract: Fundamentals of soft thermofluidic system design

Supplementary files

Article information

23 Mar 2020
08 Jul 2020
First published
09 Jul 2020

Soft Matter, 2020,16, 6924-6932
Article type
Author version available

Fundamentals of soft thermofluidic system design

P. Kotagama, K. C. Manning and K. Rykaczewski, Soft Matter, 2020, 16, 6924 DOI: 10.1039/D0SM00504E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Search articles by author