Coarse-grained Monte Carlo simulations of nanogel–polyelectrolyte complexes: electrostatic effects
Abstract
Coarse-grained Monte-Carlo simulations of nanogel–polyelectrolyte complexes have been carried out. The results presented here capture two phenomena reported in experiments with real complexes: (i) the reduction in size after absorbing just a few chains and (ii) the charge inversion detected through electrophoretic mobility data. Our simulations reveal that charge inversion occurs if the polyelectrolyte charge is large enough. In addition, the distribution of chains inside the nanogel strongly depends on whether charge inversion takes place. It should also be stressed that the chain topology has little influence on most of the properties studied here.