Issue 15, 2020

Rheological similarities between dense self-propelled and sheared particulate systems

Abstract

Different from previous modeling of self-propelled particles, we develop a method to propel particles with a constant average velocity instead of a constant force. This constant propulsion velocity (CPV) approach is validated by its agreement with the conventional constant propulsion force (CPF) approach in the flowing regime. However, the CPV approach shows its advantage of accessing quasistatic flows of yield stress fluids with a vanishing propulsion velocity, while the CPF approach is usually unable to because of finite system size. Taking this advantage, we realize cyclic self-propulsion and study the evolution of the propulsion force with the propelled particle displacement, both in the quasistatic flow regime. By mapping the shear stress and shear rate to the propulsion force and propulsion velocity, we find similar rheological behaviors of self-propelled systems to sheared systems, including the yield force gap between the CPF and CPV approaches, propulsion force overshoot, reversible–irreversible transition under cyclic propulsion, and propulsion bands in plastic flows. These similarities suggest underlying connections between self-propulsion and shear, although they act on systems in different ways.

Graphical abstract: Rheological similarities between dense self-propelled and sheared particulate systems

Article information

Article type
Paper
Submitted
16 Jan 2020
Accepted
16 Mar 2020
First published
17 Mar 2020

Soft Matter, 2020,16, 3642-3648

Rheological similarities between dense self-propelled and sheared particulate systems

R. Mo, Q. Liao and N. Xu, Soft Matter, 2020, 16, 3642 DOI: 10.1039/D0SM00101E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements