Jump to main content
Jump to site search


Diffusive Transport of Nanoscale Objects with Cell Membranes: A Computational Perspective

Abstract

Diffusion is the essential and fundamental means of transport of substances on cell membranes, and the dynamics of biomembranes plays a crucial role in the regulation of numerous cellular processes. The understanding of the complex mechanisms and nature of particle diffusion have a bearing on establishing guidelines for the design of efficient transport materials and unique therapeutic approaches. Herein, this review article highlights the most recent advances in investigating diffusion dynamics of nanoscale objects on biological membranes, focusing on the approaches of tailored computer simulations and theoretical analysis. Due to the presence of the complicated and heterogeneous environment on native cell membranes, the diffusive transport behaviors of nanoparticles exhibit unique and variable characteristics. The general aspect and basic theories of normal diffusion and anomalous diffusion are introduced. In addition, the influence of a series of external and internal factors on the diffusion behaviors are discussed, including particle size, membrane curvature, interactions between particle-membrane or particle-inclusion, and crowding degree of the membrane. Finally, we seek to identify open problems in the existing experimental, simulation, and theoretical researches, and to propose challenges for the future development.

Back to tab navigation

Article information


Submitted
27 Nov 2019
Accepted
02 Mar 2020
First published
02 Mar 2020

Soft Matter, 2020, Accepted Manuscript
Article type
Perspective

Diffusive Transport of Nanoscale Objects with Cell Membranes: A Computational Perspective

Z. Xu, L. Gao, P. Chen and L. Yan, Soft Matter, 2020, Accepted Manuscript , DOI: 10.1039/C9SM02338K

Social activity

Search articles by author

Spotlight

Advertisements