Issue 13, 2020

Modeling the dynamics of phospholipids in the fluid phase of liposomes

Abstract

We present the derivation of a new model to describe neutron spin echo spectroscopy and quasi-elastic neutron scattering data on liposomes. We compare the new model with existing approaches and benchmark it with experimental data. The analysis indicates the importance of including all major contributions in the modeling of the intermediate scattering function. Simultaneous analysis of the experimental data on lipids with full contrast and tail contrast matched samples reveals highly confined lipid tail motion. A comparison of their dynamics demonstrates the statistical independence of tail-motion and height–height correlation of the membrane. A more detailed analysis indicates that the lipid tail relaxation is confined to a potential with cylindrical symmetry, in addition to the undulation and diffusive motion of the liposome. Despite substantial differences in the chemistry of the fatty acid tails, the observation indicates a universal behavior. The analysis of partially deuterated systems confirms the strong contribution of the lipid tail to the intermediate scattering function. Within the time range from 5 to 100 ns, the intermediate scattering function can be described by the height–height correlation function. The existence of the fast-localized tail motion and the contribution of slow translational diffusion of liposomes determine the intermediate scattering function for t < 5 ns and t > 100 ns, respectively. Taking into account the limited time window lowers the bending moduli by a factor of 1.3 (DOPC) to 2 (DMPC) compared to the full range.

Graphical abstract: Modeling the dynamics of phospholipids in the fluid phase of liposomes

Supplementary files

Article information

Article type
Paper
Submitted
24 Oct 2019
Accepted
20 Feb 2020
First published
21 Feb 2020

Soft Matter, 2020,16, 3245-3256

Author version available

Modeling the dynamics of phospholipids in the fluid phase of liposomes

S. Gupta and G. J. Schneider, Soft Matter, 2020, 16, 3245 DOI: 10.1039/C9SM02111F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements