Issue 5, 2020

Bacteria driving droplets

Abstract

We confine a dense suspension of motile Escherichia coli inside a spherical droplet in a water-in-oil emulsion, creating a “bacterially” propelled droplet. We show that droplets move in a persistent random walk, with a persistence time τ ∼ 0.3 s, a long-time diffusion coefficient D ∼ 0.5 μm2 s−1, and an average instantaneous speed V ∼ 1.5 μm s−1 when the bacterial suspension is at the maximum studied concentration. Several droplets are analyzed, varying the drop radius and bacterial concentration. We show that the persistence time, diffusion coefficient and average speed increase with the bacterial concentration inside the drop, but are largely independent of the droplet size. By measuring the turbulent-like motion of the bacteria inside the drop, we demonstrate that the mean velocity of the bacteria near the bottom of the drop, which is separated from a glass substrate by a thin lubrication oil film, is antiparallel to the instantaneous velocity of the drop. This suggests that the driving mechanism is a slippery rolling of the drop over the substrate, caused by the collective motion of the bacteria. Our results show that microscopic organisms can transfer useful mechanical energy to their confining environment, opening the way to the assembly of mesoscopic motors composed of microswimmers.

Graphical abstract: Bacteria driving droplets

Supplementary files

Article information

Article type
Paper
Submitted
11 Sep 2019
Accepted
31 Dec 2019
First published
03 Jan 2020

Soft Matter, 2020,16, 1359-1365

Bacteria driving droplets

G. Ramos, M. L. Cordero and R. Soto, Soft Matter, 2020, 16, 1359 DOI: 10.1039/C9SM01839E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements