Jump to main content
Jump to site search


Cohesive self-organization of mobile microrobotic swarms

Author affiliations

Abstract

Mobile microrobots are envisioned to be useful in a wide range of high-impact applications, many of which require cohesive group formation to maintain self-bounded swarms in the absence of confining boundaries. Cohesive group formation relies on a balance between attractive and repulsive interactions between agents. We found that a balance of magnetic dipolar attraction and multipolar repulsion between self-assembled particle chain microrobots enables their self-organization into cohesive clusters. Self-organized microrobotic clusters move above a solid substrate via a hydrodynamic self-propulsion mechanism. Cluster velocity increases with cluster size, resulting from collective hydrodynamic effects. Clustering is promoted by the strength of cohesive interactions and is hindered by the heterogeneities of individual microrobots. The scalability of cohesive interactions allows the formation of larger groups, whose internal spatiotemporal organization undergoes a transition from solid-like ordering to a liquid-like behavior with increasing cluster size. Our work elucidates the dynamics of clustering under cohesive interactions, and presents an approach for addressing the operation of microrobots as localized collectives.

Graphical abstract: Cohesive self-organization of mobile microrobotic swarms

Back to tab navigation

Supplementary files

Article information


Submitted
26 Jun 2019
Accepted
22 Jan 2020
First published
23 Jan 2020

This article is Open Access

Soft Matter, 2020, Advance Article
Article type
Paper

Cohesive self-organization of mobile microrobotic swarms

B. Yigit, Y. Alapan and M. Sitti, Soft Matter, 2020, Advance Article , DOI: 10.1039/C9SM01284B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements