Issue 10, 2020

Response of a raft of particles to a local indentation

Abstract

Interfaces that are coated with a layer of adsorbed particles (particle “rafts”) are common in natural and industrial settings. Particle-coated interfaces may be useful in part because the particulate structure can endow the fluid interface with physical properties distinct from molecular surfactants. We study the mechanics of particulate assemblies by measuring the raft's response to indentation in the vertical direction by a flat, circular disc. We measured force (f) vs. indentation depth (δ) and found two linear regions with different slopes. The first linear region started at δ = 0 and persisted over a range of δ much less than the capillary length. In the second linear region, the raft had the same stiffness (df/dδ) as a liquid interface with no particles. Further, we show that, as long as the indenter was larger than a single particle, the azimuthal compression imposed by the interface deformation relaxed through in-plane rearrangement of particles rather than by the radial wrinkles that are characteristic of thin elastic sheets at fluid interfaces. We show how the force–displacement curves and stiffnesses depended on fluid mass densities, interfacial tensions, and indenter radius. For all cases studied, the particle-raft coated interfaces had a stiffness equal to or smaller than that of a bare fluid interface. Although the interfacial particle raft behaved like a pure fluid interface under a wide range of displacements, we show that the raft could nonetheless withstand substantially greater applied force (up to 2×) and greater indentation depth (up to 2.6×), so that the range of reversible behavior was greatly extended. These results improve our understanding of the mechanics of particulate assemblies at interfaces.

Graphical abstract: Response of a raft of particles to a local indentation

Supplementary files

Article information

Article type
Paper
Submitted
21 Jun 2019
Accepted
08 Feb 2020
First published
10 Feb 2020

Soft Matter, 2020,16, 2497-2505

Author version available

Response of a raft of particles to a local indentation

W. He, Y. Sun and A. D. Dinsmore, Soft Matter, 2020, 16, 2497 DOI: 10.1039/C9SM01251F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements