Issue 32, 2020

Scale-dependent particle diffusivity and apparent viscosity in polymer solutions as probed by dynamic magnetic nanorheology

Abstract

In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.

Graphical abstract: Scale-dependent particle diffusivity and apparent viscosity in polymer solutions as probed by dynamic magnetic nanorheology

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2019
Accepted
07 Jul 2020
First published
16 Jul 2020

Soft Matter, 2020,16, 7562-7575

Scale-dependent particle diffusivity and apparent viscosity in polymer solutions as probed by dynamic magnetic nanorheology

M. Hess, M. Gratz, H. Remmer, S. Webers, J. Landers, D. Borin, F. Ludwig, H. Wende, S. Odenbach, A. Tschöpe and A. M. Schmidt, Soft Matter, 2020, 16, 7562 DOI: 10.1039/C9SM00747D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements