Jump to main content
Jump to site search

Issue 1, 2021
Previous Article Next Article

Benzothiadiazole-based photosensitizers for efficient and stable dye-sensitized solar cells and 8.7% efficiency semi-transparent mini-modules

Author affiliations

Abstract

We report on the synthesis and structure–properties relationships of five benzothiadiazole-based organic dyes designed for use in Dye-Sensitized Solar Cells (DSSCs). These compounds exhibit hues ranging from pink to violet-blue and demonstrate good Power Conversion Efficiencies (PCEs) ranging from 7.0% to 9.8% when employed as photosensitizers with TiO2 mesoporous electrodes. The combination of two of these dyes following a co-sensitization approach led to a PCE of up to 10.9% with an iodine-based liquid electrolyte. We demonstrate, using charge extraction and transient photo-voltage experiments, that the improvement of the performances with the cocktail of dyes is related to better light absorption and passivation of the TiO2 surface. When the volatile electrolyte is swapped for an ionic-liquid, PCEs over 7.5% are reached and the best solar cells retain 80% of their initial performance after 7000 h of light exposure, according to the accelerated aging test ISOS-L2 (65 °C, AM1.5G, under continuous irradiation at 1000 W m−2). Finally, we report excellent performance in five-cell mini-modules with 14 cm2 active area demonstrating a PCE of 8.7%. This corresponds to a power output of circa 123 mW, ranking among the highest performances for such semi-transparent photovoltaic devices.

Graphical abstract: Benzothiadiazole-based photosensitizers for efficient and stable dye-sensitized solar cells and 8.7% efficiency semi-transparent mini-modules

Back to tab navigation

Supplementary files

Article information


Submitted
08 Sep 2020
Accepted
22 Oct 2020
First published
07 Dec 2020

This article is Open Access

Sustainable Energy Fuels, 2021,5, 144-153
Article type
Paper

Benzothiadiazole-based photosensitizers for efficient and stable dye-sensitized solar cells and 8.7% efficiency semi-transparent mini-modules

M. Godfroy, J. Liotier, V. M. Mwalukuku, D. Joly, Q. Huaulmé, L. Cabau, C. Aumaitre, Y. Kervella, S. Narbey, F. Oswald, E. Palomares, C. A. González Flores, G. Oskam and R. Demadrille, Sustainable Energy Fuels, 2021, 5, 144
DOI: 10.1039/D0SE01345E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements