Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes

Author affiliations

Abstract

Flow battery technology offers a promising low-cost option for stationary energy storage applications. Aqueous zinc–nickel battery chemistry is intrinsically safer than non-aqueous battery chemistry (e.g. lithium-based batteries) and offers comparable energy density. In this work, we show how combining high power density and low-yield stress electrodes can minimize energy loss due to pumping, and have demonstrate methods to achieve high energy and power density for ZnO/Ni(OH)2 electrodes by changing composition and optimizing testing protocols. Firstly, mechanically stable and homogeneous Ni(OH)2/carbon and ZnO/Zn flowable electrodes in 7 M KOH electrolyte were designed using a microgel dispersion as the suspending matrix. By determining the critical volume fractions for conductivity percolation, colloidal suspensions with 6.2 vol% of carbon and 23.1 vol% of Zn were selected for preparing catholytes and anolytes to ensure that these semi-solid electrodes possess high voltage and high coulombic efficiencies. The resulting flowable electrodes exhibited non-Newtonian rheology with a yield stress of approximately ∼200 Pa, which assists in maintaining mechanical stability of the suspensions. An energy density of up to 134 W h Lcatholyte−1 and power density up to ∼159 mW cmgeo.−2 was demonstrated for semi-solid ZnO/Ni(OH)2 electrodes, and coulombic efficiency of 94% was achieved during cycling by optimizing the charging protocol to 60% SOC of Ni(OH)2. Lastly, semi-solid ZnO and Ni(OH)2 flow cells were built and tested using an intermittent mode of operation. The high energy and power densities, high coulombic efficiency, and negligible pumping loss of the Zn–Ni semi-solid electrodes developed in the present work present a promising system for further development.

Graphical abstract: High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes

Back to tab navigation

Supplementary files

Article information


Submitted
30 Jan 2020
Accepted
01 Jun 2020
First published
02 Jun 2020

This article is Open Access

Sustainable Energy Fuels, 2020, Advance Article
Article type
Paper

High-energy and high-power Zn–Ni flow batteries with semi-solid electrodes

Y. G. Zhu, T. M. Narayanan, M. Tulodziecki, H. Sanchez-Casalongue, Q. C. Horn, L. Meda, Y. Yu, J. Sun, T. Regier, G. H. McKinley and Y. Shao-Horn, Sustainable Energy Fuels, 2020, Advance Article , DOI: 10.1039/D0SE00675K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements