Jump to main content
Jump to site search


Hydrogen production from natural gas and biomethane with carbon capture and storage – a techno-environmental analysis

Abstract

This study presents an integrated techno-environmental assessment of hydrogen production from natural gas and biomethane, combined with CO2 capture and storage (CCS). We have included steam methane reforming and autothermal reforming for syngas production. CO2 is captured from the syngas with a novel vacuum pressure swing adsorption (VPSA) process, that combines hydrogen purification and CO2 separation in one cycle. As comparison, we have included cases with conventional amine-based technology. We have extended standard attributional LCA following ISO standards with a detailed carbon balance of the biogas production process (via digestion) and its by-products. The results show that the life-cycle greenhouse gas performance of the VPSA and amine-based CO2 capture technologies are very similar as a results of comparable energy consumptions. The configuration with the highest plant-wide CO2 capture rate (almost 100% of produced CO2 captured) is autothermal reforming with a two-stage water-gas shift and VPSA CO2 capture – because the latter has an inherently high CO2 capture rate of 98% or more for the investigated syngas. Depending on the configuration, the addition of CCS to natural gas reforming-based hydrogen production reduces its life-cycle Global Warming Potential by 45-85 percent, while the other environmental life-cycle impacts slightly increase. This brings natural gas-based hydrogen on par with renewable electricity-based hydrogen regarding impacts on climate change. When biomethane is used instead of natural gas, our study shows potential for net negative greenhouse gas emissions, i.e. the net removal of CO2 over the life cycle of biowaste-based hydrogen production. In the special case where the biogas digestate is used as agricultural fertiliser, and where a substantial amount of the carbon in the digestate remains in the soil, the biowaste-based hydrogen reaches net-negative life cycle greenhouse gas emissions even without the application of CCS. Addition of CCS to biomethane-based hydrogen production leads to net-negative emissions in all investigated cases.

Back to tab navigation

Supplementary files

Article information


Submitted
10 Feb 2020
Accepted
07 Mar 2020
First published
11 Mar 2020

This article is Open Access

Sustainable Energy Fuels, 2020, Accepted Manuscript
Article type
Paper

Hydrogen production from natural gas and biomethane with carbon capture and storage – a techno-environmental analysis

C. Antonini, K. Treyer, A. Streb, M. Van der Spek, C. Bauer and M. Mazzotti, Sustainable Energy Fuels, 2020, Accepted Manuscript , DOI: 10.1039/D0SE00222D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements