Issue 5, 2020

Surfactant decorated hydrotalcite-supported polyoxometalates for aerobic oxidation of 5-hydroxymethylfurfural and monosaccharides

Abstract

Trifunctional catalysts based on polyoxometalate (POM) and surfactant modified MgAl-layered double hydroxide (LDH) were synthesized and evaluated for aerobic oxidation of 5-hydroxymethylfurfural (5-HMF) and monosaccharides. H5PMo10V2O40@MgnAl-Surf (wt%) (abbreviated as HPMoV@MgnAl-Surf (wt%), n represents the molar ratio of Mg to Al) presented tunable redox potential, Brønsted acidity, Lewis acidity, and basicity upon changing the molar ratio of HPMoV to MgnAl-Surf and also n values. HPMoV@Mg4Al-Surf (23) was found to be the most active and exhibits 88.6% selectivity to 2,5-diformylfuran (DFF) with 94.6% conversion of 5-HMF in dimethyl sulfoxide (DMSO), while presented 90.9% selectivity to 2,5-furandicarboxylic acid (FDCA) with 93.2% conversion in water. The existence of a surfactant being covalently bonded on Mg4Al-LDH provided a hydrophobic surrounding for concentrating the reactants and repelling the product, and promoted the mass transfer within the inter-layer gallery. Meanwhile, higher yields of DFF of 66.4% and 50.6% were achieved directly from fructose and glucose, and were attributed to the suitable balancing of acidity and basicity in multifunctional catalysts. The catalytic mechanism for glucose oxidation on HPMoV@MgnAl-Surf was studied in detail to determine the triple-functional sites on the pathway. Also, the oxidation of 5-HMF, fructose and glucose was achieved under atmospheric pressure of O2, showing the wide availability of HPMoV@Mg4Al-Surf (23). HPMoV@Mg4Al-Surf (23) showed good stability and durability for being reused ten times without any leaching of HPMoV from Mg4Al-Surf due to HPMoV being embedded by the surfactant.

Graphical abstract: Surfactant decorated hydrotalcite-supported polyoxometalates for aerobic oxidation of 5-hydroxymethylfurfural and monosaccharides

Supplementary files

Article information

Article type
Paper
Submitted
23 Dec 2019
Accepted
11 Feb 2020
First published
14 Feb 2020

Sustainable Energy Fuels, 2020,4, 2236-2248

Surfactant decorated hydrotalcite-supported polyoxometalates for aerobic oxidation of 5-hydroxymethylfurfural and monosaccharides

P. Cao, Y. Li, Y. Li, X. Zhang, X. Wang and Z. Jiang, Sustainable Energy Fuels, 2020, 4, 2236 DOI: 10.1039/C9SE01296F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements