Jump to main content
Jump to site search


Fast and efficient upgrading of levulinic acid into long-chain alkyl levulinates fuel additives with tungsten salt catalyst at low temperature

Abstract

Levulinic acid (LA) is a promising renewable platform compound derived from biomass for the manufacture of various valuable chemicals, among which levulinate esters have been demonstrated to be good fuel additives. Many previous works have focused on the production of short-chain levulinates for biofuels such as methyl and ethyl levulinates, but these esters suffer some essential issues including high oxygen content, low energy density (or heating value) and water-solubility. Long-chain levulinate esters have similar structures to biodiesels. The long carbon chain may provide higher carbon content and strong hydrophobicity, therefore improving the energy density and water-insolubility. In this work, the synthesis of a long-chain levulinate ester, n-hexyl levulinate (HL), has been fast and efficiently achieved by the catalytic esterification of LA and 1-hexanol at low temperature. Tungsten hexachloride (WCl6) showed the most superior activity among the tested metal salt catalysts under mild conditions. A HL yield of ~85% with almost complete LA conversion could be obtained at 50 °C after only 30 min. Other hexanols that have larger steric hindrances, such as 2-ethyl-1-butanol, 2-hexanol, 3-hexanol and cyclohexanol, could also proceed efficient esterfication with LA over WCl6 catalyst, resulting in excellent product yields of ~82—91%. The strategy applies to the efficient synthesis of longer chain levulinate ester such as n-octyl levulinate (OL) as well. The WCl6 catalyst was reusable for several times in a consecutive batch reaction mode. The method reported herein offers a strategy for the efficient production of liquid fuels from LA, potentially bridging raw biomass feedstocks and terminal utilization of biobased products.

Back to tab navigation

Supplementary files

Article information


Submitted
22 Dec 2019
Accepted
03 Feb 2020
First published
03 Feb 2020

Sustainable Energy Fuels, 2020, Accepted Manuscript
Article type
Paper

Fast and efficient upgrading of levulinic acid into long-chain alkyl levulinates fuel additives with tungsten salt catalyst at low temperature

S. Jia, J. Ma, D. Wang, K. Wang, Q. Zheng, C. Song and X. Guo, Sustainable Energy Fuels, 2020, Accepted Manuscript , DOI: 10.1039/C9SE01287G

Social activity

Search articles by author

Spotlight

Advertisements