Jump to main content
Jump to site search


In-Depth Understanding of the CO2 Limitation of Air Fed Anion Exchange Membrane Fuel Cells

Abstract

The interaction of a perfluorinated anion exchange membrane(AEM), initially in the hydroxide form, with atmospheric CO2 at 60 ᵒC and under a range of relative humidities is studied both in a fuel cell and with ex-situ measurements to understand the performance drop. A new novel titration method was used to quantify the amounts of hydroxide,carbonate and bicarbonates in the membrane. However, hydroxide and bicarbonate react internally which disturbs the equilibrium and hence it’s impossible to detect real species concentration using titration. The uptake of CO2 leads to a rise in membrane mass within the first 15 min. The anionic conductivity of the AEM experiences a quick drop within 20 minutes to carbonate, bicarbonate level. However, switching the inlet gas to 0 ppm CO2 reverses the equilibrium due to desorption phenomenon. Investigating the morphology of the film by small angle x-ray scattering shows that the ionomer domains looses intensity as the reaction progresses, the drop is of the double-exponential type but the time of equilibration is slower when compared to that of the conductivity. The wide-angle x-ray scattering data was fit to 3 gaussian peaks showing that the CF2 inter-chain spacing becomes less crystalline during the process. 30% of peak power was lost for this membrane in an AEM fuel cell on addition of CO2, yet we observed the highest H2/ambient air(400 ppm CO2) performance, 446 mW/cm2 reported to date.

Back to tab navigation

Supplementary files

Article information


Accepted
26 Dec 2019
First published
03 Jan 2020

Sustainable Energy Fuels, 2020, Accepted Manuscript
Article type
Paper

In-Depth Understanding of the CO2 Limitation of Air Fed Anion Exchange Membrane Fuel Cells

A. G. Divekar, A. Neyerlin, C. Antunes, D. Strasser, A. R. Motz, S. Seifert, X. Zuo, B. Pivovar and A. M. Herring, Sustainable Energy Fuels, 2020, Accepted Manuscript , DOI: 10.1039/C9SE01212E

Social activity

Search articles by author

Spotlight

Advertisements