Issue 4, 2020

In-depth understanding of the CO2 limitation of air fed anion exchange membrane fuel cells

Abstract

The interaction of a perfluorinated anion exchange membrane (AEM), initially in the hydroxide form, with atmospheric CO2 at 60 °C and under a range of relative humidity conditions is studied both in a fuel cell and with ex situ measurements to understand the performance drop. A new novel titration method was used to quantify the amounts of hydroxide, carbonate and bicarbonate in the membrane. However, hydroxide and bicarbonate react internally which disturbs the equilibrium and hence it's impossible to detect real species concentration using titration. The uptake of CO2 leads to a rise in membrane mass within the first 15 min. The anionic conductivity of the AEM experiences a quick drop within 20 minutes to carbonate and bicarbonate levels. However, switching the inlet gas to 0 ppm CO2 reverses the equilibrium due to the desorption phenomenon. Investigating the morphology of the film by small angle X-ray scattering shows that the ionomer domains lose intensity as the reaction progresses, and the drop is of the double-exponential type but the time of equilibration is slower when compared to that of the conductivity. The wide-angle X-ray scattering data were fit to 3 Gaussian peaks showing that the CF2 inter-chain spacing becomes less crystalline during the process. 30% of peak power was lost for this membrane in an AEM fuel cell on addition of CO2, yet we observed the highest H2/ambient air (400 ppm CO2) performance, 446 mW cm−2, reported to date.

Graphical abstract: In-depth understanding of the CO2 limitation of air fed anion exchange membrane fuel cells

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2019
Accepted
26 Dec 2019
First published
03 Jan 2020

Sustainable Energy Fuels, 2020,4, 1801-1811

Author version available

In-depth understanding of the CO2 limitation of air fed anion exchange membrane fuel cells

A. G. Divekar, A. C. Yang-Neyerlin, C. M. Antunes, D. J. Strasser, A. R. Motz, S. S. Seifert, X. Zuo, B. S. Pivovar and A. M. Herring, Sustainable Energy Fuels, 2020, 4, 1801 DOI: 10.1039/C9SE01212E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements