Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



The role of Se vacancies and Fe doping of nickel selenide in the water oxidation reaction

Author affiliations

Abstract

The catalytic activity and reactivity of catalysts can be varied by adopting methods such as composite formation, doping with foreign atoms, and creating vacancies. Researchers are studying different catalysts to obtain clean energy from renewable energy sources. Highly competent and potential catalysts toward the oxygen evolution reaction (OER) are required for commercialisation. Transition-metal diselenides are promising electrocatalysts for OER. Combining both experimental and theoretical results, we demonstrate that both Fe incorporation and Se vacancy engineering in the catalyst NiSe2 improve the electrocatalytic activity toward OER. Fe-doped NiSe2 with Se vacancies (VSe–Ni0.70Fe0.30Se2) shows enhanced OER activity and requires an overpotential of 210 mV to achieve the current density of 10 mA cm−2. This value is much lower than that of the benchmark catalyst IrO2/C. The results of density functional theory calculations show that both Fe doping and Se vacancies increase the density of states near the Fermi level, increasing the conductivity of the VSe–Ni0.70Fe0.30Se2 catalyst. The calculations also reveal a decrease in the free energy of the reaction intermediates, resulting in enhanced electrocatalytic OER activity.

Graphical abstract: The role of Se vacancies and Fe doping of nickel selenide in the water oxidation reaction

Back to tab navigation

Supplementary files

Article information


Submitted
10 Dec 2019
Accepted
31 Mar 2020
First published
31 Mar 2020

Sustainable Energy Fuels, 2020, Advance Article
Article type
Paper

The role of Se vacancies and Fe doping of nickel selenide in the water oxidation reaction

B. Mohanty, B. K. Jena, M. Kandasamy, N. Dalai, R. K. Sahu, R. M. Kadam, B. Chakraborty and B. Jena, Sustainable Energy Fuels, 2020, Advance Article , DOI: 10.1039/C9SE01208G

Social activity

Search articles by author

Spotlight

Advertisements