Jump to main content
Jump to site search


Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market

Author affiliations

Abstract

A techno-economic analysis of perovskite-silicon tandem solar modules is presented, outlining the most viable pathway for designing cost-effective, commercially viable tandems. We explore the cost-performance trade-off for silicon bottom cells in perovskite-silicon tandems, and evaluate the potential of using low-cost, lower-efficiency silicon bottom cells, on the basis of levelized cost of electricity (LCOE), compared to the higher-efficiency, higher-cost bottom cells that have been the primary focus of most perovskite-silicon tandem research efforts. We fabricate a cost-effective four-terminal silicon-perovskite tandem using a low-cost multicrystalline bottom cell and calculate the device LCOE. We then extend this analysis by modeling performance and LCOE of similar tandems instead using high-efficiency silicon bottom cells, enabling direct comparison of a low-cost and a high-efficiency tandem. Lastly parametric analyses are performed to more broadly examine the bottom-cell cost-performance trade-off. We show that low-cost silicon, even at the detriment of efficiency, is the more likely path to make perovskite-silicon tandems commercially viable and enable future reductions in LCOE, given both current and near-future silicon technology. We lay out a clear economic motivation for pursuing low-cost silicon bottom cells in perovskite-silicon tandems, showing that they can achieve a 15–20% relative LCOE reduction compared to the single-junction sub-cells. This is a 2–3 times greater relative LCOE reduction compared with using high-efficiency silicon. Furthermore, we show that the advantage of using low-cost silicon bottom cells is robust to and benefits from expected market trends, such as falling system costs and advanced, low-cost manufacturing. This work provides a clear pathway to cost-effective tandems, outlines the benefits for existing multicrystalline silicon manufacturers to investing in tandem development, and points out a clear mismatch between commercial viability and current research efforts.

Graphical abstract: Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market

Back to tab navigation

Supplementary files

Article information


Submitted
30 Jul 2019
Accepted
01 Nov 2019
First published
11 Dec 2019

This article is Open Access

Sustainable Energy Fuels, 2020, Advance Article
Article type
Paper

Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market

S. E. Sofia, H. Wang, A. Bruno, J. L. Cruz-Campa, T. Buonassisi and I. M. Peters, Sustainable Energy Fuels, 2020, Advance Article , DOI: 10.1039/C9SE00948E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements