Jump to main content
Jump to site search


Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications

Abstract

Performance of electrical double layer capacitors (EDLCs), also known as supercapacitors, which are composed of porous electrodes and ionic liquid electrolytes, depends largely on the structure and dynamics of molecules/ions on the electrode-electrolyte interfaces. Immobilization of ions on electrodes surface and diffusivity of ions in the middle of the pores are two important phenomena influencing performance of supercapacitors. In recent years, porous carbon or metal carbide derived electrodes and ionic liquids electrolytes, either in the neat state, or mixed with organic solvents, were used to improve the energy and power density of supercapacitors. The molecular/ionic level predictive understanding of ions immobilization and movement inside the pores can be achieved, in principle, using molecular dynamics (MD) simulations. This calls for experimental techniques capable of validating MD predictions and providing directions for the future MD studies. Neutron scattering techniques, particularly quasi-elastic neutron scattering (QENS), uniquely provide information directly comparable with MD simulations results. This includes electrolytes confined in the electrode materials, due to high penetrative power of neutrons and their high sensitivity to hydrogen-bearing species. This paper reviews recent research where QENS, together with electrochemical measurements and molecular dynamics simulations, has been employed to explore the complex electrode/electrolyte systems, which is critical for developing predictive understanding of the charge storage mechanism in supercapacitors.

Back to tab navigation

Article information


Submitted
20 Sep 2019
Accepted
09 Jan 2020
First published
15 Jan 2020

Sustainable Energy Fuels, 2020, Accepted Manuscript
Article type
Review Article

Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications

N. C. Osti and E. Mamontov, Sustainable Energy Fuels, 2020, Accepted Manuscript , DOI: 10.1039/C9SE00829B

Social activity

Search articles by author

Spotlight

Advertisements