Issue 4, 2020

Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications

Abstract

The performance of electrical double layer capacitors (EDLCs), also known as supercapacitors, which are composed of porous electrodes and ionic liquid electrolytes, depends largely on the structure and dynamics of molecules/ions at the electrode–electrolyte interfaces. Immobilization of ions on the electrode surface and diffusivity of ions in the middle of the pores are two important phenomena influencing the performance of supercapacitors. In recent years, porous carbon or metal carbide derived electrodes and ionic liquid electrolytes, either in the neat state or mixed with organic solvents, were used to improve the energy and power density of supercapacitors. The molecular/ionic level predictive understanding of ion immobilization and movement inside the pores can be achieved, in principle, using molecular dynamics (MD) simulations. This calls for experimental techniques capable of validating MD predictions and providing directions for future MD studies. Neutron scattering techniques, particularly quasi-elastic neutron scattering (QENS), uniquely provide information directly comparable with MD simulation results. This includes electrolytes confined in electrode materials, due to high penetrative power of neutrons and their high sensitivity to hydrogen-bearing species. This paper reviews recent research where QENS, together with electrochemical measurements and molecular dynamics simulations, has been employed to explore complex electrode/electrolyte systems, which is critical for developing predictive understanding of the charge storage mechanism in supercapacitors.

Graphical abstract: Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications

Article information

Article type
Review Article
Submitted
20 Sep 2019
Accepted
09 Jan 2020
First published
15 Jan 2020

Sustainable Energy Fuels, 2020,4, 1554-1576

Author version available

Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications

N. C. Osti and E. Mamontov, Sustainable Energy Fuels, 2020, 4, 1554 DOI: 10.1039/C9SE00829B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements