Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

We report the synthesis and characterization of novel activated carbon derived from waste eucalyptus bark through chemical and physical activation processes to use as a potential electrode for symmetric electrical double layer capacitors (EDLCs). A porous polymer film prepared by a simple phase-inversion method and activated by an ionic liquid electrolyte has been used as a flexible, high ion-conducting, mechanically and electrochemically stable electrolyte for EDLCs. The use of waste eucalyptus bark to produce activated carbon (AC) with a straightforward activation process, and a simple phase-inversion method to produce porous polymer electrolytes (PPEs), make possible the preparation of eco-friendly, safe, and flexible EDLCs. The derived AC powder possesses a hierarchical porous interior having micro- and meso-porosity. An EDLC, constructed using the optimized AC, shows a high specific capacitance of ∼155 F g−1 and offers a better rate capability than commercial AC-based devices. EIS studies reveal superior charge-transfer characteristics of optimized AC electrodes, as compared to the commercial AC. Galvanostatic charge–discharge measurements highlight the high specific energy and maximum power (∼32.8 W h kg−1 and ∼57 kW kg−1, respectively) of the optimized AC based EDLC. This device maintains its performance for at least 10 000 charge–discharge cycles with high (96%) capacitance retention.

Graphical abstract: Hierarchical porous carbon derived from eucalyptus-bark as a sustainable electrode for high-performance solid-state supercapacitors

Page: ^ Top