Jump to main content
Jump to site search


Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues

Author affiliations

Abstract

peri-Acenes have shown great potential for use as functional materials because of their open-shell singlet biradical character. However, only a limited number of peri-acene derivatives larger than peri-tetracene have been synthesized to date, presumably owing to the low stability of the target compounds in addition to the complicated synthesis scheme. Here, a very simple synthesis route for the tetrabenzo[a,f,j,o]perylene (TBP) structure enables the development of highly stable peri-tetracene analogues. Despite a high degree of singlet biradical character, the compounds with four substituents at the zigzag edge show a remarkable stability in solution under ambient conditions, which is better than that of acene derivatives with a closed-shell electronic configuration. The crystal structures of the TBP derivatives were obtained for the first time; these are valuable to understand the relationship between the structure and biradical character of peri-acenes. The application of peri-acenes in electronic devices should also be investigated. Therefore, the semiconducting properties of the TBP derivative were investigated by fabricating the field-effect transistors.

Graphical abstract: Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues

Back to tab navigation

Supplementary files

Article information


Submitted
26 Aug 2020
Accepted
13 Oct 2020
First published
14 Oct 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020, Advance Article
Article type
Edge Article

Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues

M. Mamada, R. Nakamura and C. Adachi, Chem. Sci., 2020, Advance Article , DOI: 10.1039/D0SC04699J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements