Jump to main content
Jump to site search

Issue 40, 2020
Previous Article Next Article

Total syntheses of spiroviolene and spirograterpene A: a structural reassignment with biosynthetic implications

Author affiliations

Abstract

The recent natural product isolates spiroviolene and spirograterpene A are two relatively non-functionalized linear triquinane terpenes with a large number of structural homologies. Nevertheless, three significant areas of structural disparity exist based on their original assignments, one of which implies a key stereochemical divergence early in their respective biosyntheses. Herein, using two known bicyclic ketone intermediates, a core Pd-catalyzed Heck cyclization sequence, and several chemoselective transformations, we describe concise total syntheses of both natural product targets and propose that the structure of spiroviolene should be reassigned. As a result, these natural products possess greater homology than previously anticipated.

Graphical abstract: Total syntheses of spiroviolene and spirograterpene A: a structural reassignment with biosynthetic implications

Back to tab navigation

Supplementary files

Article information


Submitted
25 Aug 2020
Accepted
26 Sep 2020
First published
30 Sep 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020,11, 10939-10944
Article type
Edge Article

Total syntheses of spiroviolene and spirograterpene A: a structural reassignment with biosynthetic implications

H. M. Chi, C. J. F. Cole, P. Hu, C. A. Taylor and S. A. Snyder, Chem. Sci., 2020, 11, 10939
DOI: 10.1039/D0SC04686H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements