Jump to main content
Jump to site search


Nanocluster growth via “graft-onto”: effects on geometric structures and optical properties

Author affiliations

Abstract

Atomically precise engineering on the nanocluster surface remains highly desirable for the fundamental understanding of how surface structures of a nanocluster contribute to its overall properties. In this paper, the concept of “graft-onto” has been exploited to facilitate nanocluster growth on surface structures. Specifically, the Ag2(DPPM)Cl2 complex is used for re-constructing the surface structure of Pt1Ag28(SR)18(PPh3)4 (Pt1Ag28, SR = 1-adamantanethiolate) and producing a size-growth nanocluster – Pt1Ag31(SR)16(DPPM)3Cl3 (Pt1Ag31). The grafting effect of Ag2(DPPM)Cl2 induces both direct changes on the surface structure (e.g., size growth, structural transformation, and surface rotation) and indirect changes on the kernel structure (from a fcc configuration to an icosahedral configuration). Remarkable differences have been observed by comparing optical properties between Pt1Ag28 and Pt1Ag31. Significantly, Pt1Ag31 exhibits high photo-luminescent intensity with a quantum yield of 29.3%, which is six times that of the Pt1Ag28. Overall, this work presents a new approach (i.e., graft-onto) for the precise dictation of nanocluster surface structures at the atomic level.

Graphical abstract: Nanocluster growth via “graft-onto”: effects on geometric structures and optical properties

Back to tab navigation

Supplementary files

Article information


Submitted
11 Nov 2019
Accepted
26 Dec 2019
First published
27 Dec 2019

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020, Advance Article
Article type
Edge Article

Nanocluster growth via “graft-onto”: effects on geometric structures and optical properties

X. Kang, S. Jin, L. Xiong, X. Wei, M. Zhou, C. Qin, Y. Pei, S. Wang and M. Zhu, Chem. Sci., 2020, Advance Article , DOI: 10.1039/C9SC05700E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements