Jump to main content
Jump to site search


Multi-color tunable circularly polarized luminescence in one single AIE system

Author affiliations

Abstract

Circularly polarized luminescence (CPL) materials with a large luminescence dissymmetry factor (glum) and multi-color properties are very attractive. While multi-color tunable CPL can be realized by different organic dyes, the challenge of realizing both a higher glum and multiple colors using a single component remains. Here, we design an aggregation-induced emission (AIE) fluorophore, which is a pyridine functionalized cyanostilbene attached to a chiral unit, and realize multi-color tunable CPL with a high glum. The compound can self-assemble into a nanohelix and form both gel and xerogel films, exhibiting blue CPL with large glum values of −3.0 × 10−2 and −1.7 × 10−2, respectively. With the assistance of pyridine protonation, the xerogel films exhibit red-shifted CPL signals from 480 nm to 530 nm, covering from blue via green and yellow to orange. Additionally, the glum remains constant during the process. This work paves a simple and convenient way to construct multi-color tunable CPL materials using a single molecule.

Graphical abstract: Multi-color tunable circularly polarized luminescence in one single AIE system

Back to tab navigation

Supplementary files

Article information


Submitted
07 Nov 2019
Accepted
15 Jan 2020
First published
15 Jan 2020

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2020, Advance Article
Article type
Edge Article

Multi-color tunable circularly polarized luminescence in one single AIE system

H. Shang, Z. Ding, Y. Shen, B. Yang, M. Liu and S. Jiang, Chem. Sci., 2020, Advance Article , DOI: 10.1039/C9SC05643B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements